Periodic-Neumann boundary value problem for nonlinear parabolic equations and application to an elliptic equation
نویسندگان
چکیده
منابع مشابه
Parallel Fictitious Domain Method for a Nonlinear Elliptic Neumann Boundary Value Problem Parallel Fictitious Domain Method for a Nonlinear Elliptic Neumann Boundary Value Problem
Parallelization of the algebraic ctitious domain method is considered for solving Neumann boundary value problems with variable coeecients. The resulting method is applied to the parallel solution of the subsonic full potential ow problem which is linearized by the Newton method. Good scalability of the method is demonstrated in Cray T3E distributed memory parallel computer using MPI in communi...
متن کاملOn Neumann Boundary Value Problems for Some Quasilinear Elliptic Equations
We study the role played by the indefinite weight function a(x) on the existence of positive solutions to the problem −div (|∇u|∇u) = λa(x)|u|u+ b(x)|u|u, x ∈ Ω, ∂u ∂n = 0, x ∈ ∂Ω , where Ω is a smooth bounded domain in Rn, b changes sign, 1 < p < N , 1 < γ < Np/(N − p) and γ 6= p. We prove that (i) if ∫ Ω a(x) dx 6= 0 and b satisfies another integral condition, then there exists some λ∗ suc...
متن کاملThe local solution of a parabolic-elliptic equation with a nonlinear Neumann boundary condition
Abstract. We investigate a parabolic-elliptic problem, where the time derivative is multiplied by a coefficient which may vanish on time-dependent spatial subdomains. The linear equation is supplemented by a nonlinear Neumann boundary condition −∂u/∂νA = g(·, ·, u) with a locally defined, Lr-bounded function g(t, ·, ξ). We prove the existence of a local weak solution to the problem by means of ...
متن کاملPeriodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.
متن کاملAn Inverse Boundary-value Problem for Semilinear Elliptic Equations
We show that in dimension two or greater, a certain equivalence class of the scalar coefficient a(x, u) of the semilinear elliptic equation ∆u + a(x, u) = 0 is uniquely determined by the Dirichlet to Neumann map of the equation on a bounded domain with smooth boundary. We also show that the coefficient a(x, u) can be determined by the Dirichlet to Neumann map under some additional hypotheses.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Polonici Mathematici
سال: 1991
ISSN: 0066-2216,1730-6272
DOI: 10.4064/ap-54-2-111-116